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Abstract
We calculate dilaton and axion radiation generated in the collision of two
straight initially unexcited strings and give a rough cosmological estimate of
dilaton and axion densities produced via this mechanism in the early universe.

PACS numbers: 04.50.+h, 11.25.−w, 98.80.Cq

1. Introduction

Recently the early universe models involving strings and branes moving in higher-dimensional
spacetimes received renewed attention [1–6]. In particular, the problem of the dimensionality
of spacetime can be explored within the brane gas scenario [1–3]. Another new suggestion
is the possibility of cosmic superstrings with lower tension than those in the field-theoretical
GUT strings [3]. Superstrings as cosmic strings candidates stimulate reconsideration of the
cosmic string evolution taking into account new features such as the existence of the dilaton
and antisymmetric form fields and extra dimensions. The main role in this evolution is played
by radiation processes. The radiation mechanism which has been mostly studied in the past
consists in the formation of the excited closed loops which subsequently loose their excitation
energy emitting gravitons [7], axions [8] and dilatons [9–12].

In this paper we consider the bremsstrahlung mechanism of string radiation [13] which
works for initially unexcited strings undergoing a collision. This effect is similar to
bremsstrahlung under collision of point charges in electrodynamics. In the perturbation
expansion in terms of the fine structure constant, bremsstrahlung is the second-order process.
In the case of strings we develop a classical perturbation scheme for two endless unexcited
long strings which move one with respect to another in two parallel planes being inclined
at an angle. It was shown earlier that in four spacetime dimensions there is no gravitational
bremsstrahlung under collision of straight strings [13]. This can be traced to the absence of
gravitons in 1 + 2 gravity. It is not a coincidence that in four dimensions there is no gravitational
renormalization of the string tension either [15]. But there is no such dimensional argument
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in the case of the axion field there such dimensional argument and it was demonstrated that
string bremsstrahlung takes place indeed [14] within the model in flat space. Here we extend
this result to the full gravitating case including also the dilaton field. Strings interacts via the
dilaton, axion and graviton exchange. Radiation arises in the second-order approximation in
the coupling constants provided the (projected) intersection point moves with superluminal
velocity. Thus, the string bremsstrahlung can be viewed as a manifestation of the Cherenkov
effect.

2. String interactions

Consider a pair of relativistic strings,

xµ = xµ
n

(
σa

n

)
, µ = 0, 1, 2, 3, σa = (τ, σ ), a = 0, 1,

where n = 1, 2 is the index labelling the two strings. The four-dimensional spacetime metric
signature +,− − − and (+,−) for the string world-sheets metric signature. Strings interact
via the gravitational gµν ≡ ηµν + hµν , dilatonic φ(x) and axion (Kalb-Ramond) field Bµν(x):

S = −
∑

n

∫ {
µ

2
∂ax

µ
n ∂bx

ν
ngµνγ

ab
√−γ e2αnφ + 2πf ∂ax

µ
n ∂bx

ν
nεabBµν

}
d2σ

+
∫ {

2∂µφ∂νφgµν +
1

6
HµνρH

µνρ e−4αφ − R

16πG

} √−g d4x. (1)

Here µn are the (bare) string tension parameters, α and f are the corresponding coupling
parameters, ε01 = 1, γab is the induced metric on the world-sheets. In what follows, we
linearize the dilaton exponent as e2αφ � 1 + 2αφ.

The totally antisymmetric axion field strength is defined as

Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν. (2)

Variation of the action (1) over x
µ
n leads to the equations of motion for strings,

∂a

(
µ∂bx

ν
ngµνγ

ab
√−γ e2αφ + 4πf ∂bx

ν
nεabBµν

) − µα∂ax
α
n ∂bx

β
n gαβγ ab

√−γ e2αφ∂µφ

− µ

2
∂ax

α
n ∂bx

β
n γ ab

√−γ e2αφ∂µgαβ = 0. (3)

Variation with respect to the field variables φ,Bµν and gµν leads to the dilaton equation

∂µ(gµν∂νφ
√−g) +

α

6
H 2 e−4αφ +

µα

4

∫
∂ax

µ
n ∂bx

µ
n gµνγ

ab e2αφδ4(x − xn(σn)) d2σ = 0, (4)

the axion equation

∂µ(Hµνλ e−4αφ
√−g) + 2πf

∫
∂ax

ν
n∂bx

λ
nεabδ4(x − xn(σn)) d2σ = 0, (5)

and the Einstein equations

Rµν − 1

2
gµνR = 8πG

( φ

T µν+
B

T µν+
st

T µν

)
,

st

T µν =
∑

µ

∫
∂axµn∂bxνnγ

ab
√−γ e2αφ δ4(x − xn(σn))√−g

d2σ,

(6)

φ

Tµν =4

(
∂µφ∂νφ − 1

2
gµν(�φ)2

)
,

B

Tµν =
(

HµαβHαβ
ν − 1

6
H 2gµν

)
e−4αφ. (7)

The constraint equations for each string read(
∂ax

µ∂bx
ν − 1

2γabγ
cd∂cx

µ∂dx
ν
)
gµν = 0. (8)
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Our calculation follows the approach of [13, 14] and consists in constructing solutions of
the string equations of motion and dilaton, axion and graviton iteratively using the coupling
constants α, f,G as expansion parameters.

Denote as
0
xµ the embedding function of the non-exited straight string stretched along the

direction �µ and moving as a whole with the four-velocity uµ. This is the linear function
of τ, σ :

0
xµ = dµ + uµτ + �µσ, (9)

where the constant vector dµ can be regarded as an impact parameter. The zero-order

spacetime metric is assumed flat
0
gµν = ηµν , and the zero-order world-sheet induced metric

can be also made Minkowskian. Indeed, assuming ηµνx
µ
a xνb = δa

b , i.e. ηµν�
µ�ν = −1,

ηµνu
µuν = 1, ηµν�

µuν = 0, one has
0
γab = ∂a

0
X

µ∂b

0
X

νηµν = ηab = diag(1,−1). Assuming

that zero-order (external) dilaton and axion fields are absent
0
φ = 0,

0
B µν = 0, we expand

all the field variables φ,Bµν, hµν starting with the first order: φ =
1
φ +

2
φ + · · · , Bµν =

1
Bµν +

2
Bµν + · · · , hµν = 1

hµν +
2
hµν + · · ·.

The total dilaton, axion and graviton fields are the sums due to contributions of two
strings: φ = φ1 + φ2, B

µν = B
µν

1 + B
µν

2 , hµν = h
µν

1 + h
µν

2 . Since in the zero order the strings

are moving freely (9), the first-order dilaton
1
φn, axion

1
B

µν
n and graviton variables

1
h

µν
n do not

contain radiative components. Substituting them into the equation (3), we then obtain the first

order deformations of the world-sheets
1
x µ, which are naturally split into contributions due to

dilaton, axion and graviton exchange:

1
x µ

n = 1
x

µ

n(φ)+
1
x

µ

n(B)+
1
x

µ

n(h). (10)

The deformation due to the dilaton reads

1
x

µ

n(φ)(τ, σ ) = −i
α2µ

16π2

∫
�n′Dµ

n′ne−iq(dn+unτ+�nσ)

q2((q�1)2 − (qu1)2)
d4q, (11)

where �n′ = eiqdn′ δ(qun′)δ(q�n′), Dµ

n′n = 0
Un′ (qµ

0
Un + 2�

µ
n (�nq) − 2uµ

n (unq)),
0
Un =

ηµν
0
U

µν
n ,

0
U

µν
n = uµ

n uν
n − �

µ
n �ν

n ,
0
Un= 2. The corresponding axion contribution is

1
x

µ

n(B) = −i
2f 2

µ

∫
X

µ

n′n�n′ e−iq(dn+unτ+�nσ)

q2[(q�1)2 − (qu1)2]
d4q, (12)

where X
µ

n′n = qµAn′n + Bn′n�
µ

n′ + Cn′nu
µ

n′ , An′n = (unun′)(�n�n′) − (�nun′)(un�n′), Bn′n =
(qun)(un′�n) − (�nq)(unun′), Cnn′ = (un�n′)(�nq) − (qun)(�n�n′) and the gravitational
contribution is

1
x

µ

n(h) = −i
2

π
Gµ

∫
Z

µ

n′n�n′ e−iq(dn+unτ+�nσ)

q2[(q�1)2 − (qu1)2]
d4q, (13)

where Z
µ

n′n = ( 0
W

αβ

n′ qµ − 2
0

W
µα

n′ qβ
) 0
U nαβ − (

qχ
0

W
αβ

n′ − 2qα
0

W
βχ

n′
) 0

U
µχ
n

0
U nαβ. Here

0
W

αβ
n = 0

U
αβ
n − 1

2ηαβ
0
Un.

It can be checked that the quantities D
µ

n′n,X
µ

n′n and Z
µ

n′n satisfy the conditions D
µ

n′nunµ =
D

µ

n′n�nµ = 0, X
µ

n′nunµ = X
µ

n′n�nµ = 0, Z
µ

n′nunµ = Z
µ

n′n�nµ = 0, which ensure the fulfilment
of the constraint equations (8) up to the first-order terms.
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Radiation arises in the second-order field terms
2
φn and

2
B

µν
n which are generated by

the first-order currents
1
J (φ),

1
J

µν

(B) in the dilaton and axion field equations (4) and (5). These
currents are constructed using the first-order quantities, so the resulting equations read

�
2
φ= 4π

1
J (φ), �

2
B

µν = 4π
1
J

µν

(B), (14)

where

1
J (φ)=

∑
n�=n′

{
αµ

8π

∫
d2σ

[( 0
ẋ (µ

n

1
ẋν)
n −

0

x ′(µ
n

1

x ′ν)
n

)
ηµν − 1

2

0
U n

1
xλ
n∂λ

]
δ4

(
x− 0

x n(σn)
)

+
α2µ

8π

∫
d2σ

0
U n

1
φ n′ +

αµ

16π

∫
d2σ

0
U

µν
n

1
hn′µν

− 1

4π
∂µ((∂ν

1
φ n)

1
ψ n′µν) +

α

24π
H 2

n

}
,

1
J

µν

(B) =
∑
n�=n′

{
f

∫
d2σ

[( 0
ẋ [µ

n

1

x ′ ν]
n +

1
ẋ [µ

n

0

x ′ ν]
n

) − 1

2

0
V

µν
n

1
x λ

n∂λ

]
δ4

(
x− 0

x n(σn)
)

+
1

8π
�

1
B

µν
n

1
hn′ +

1

8π

1
H

λµν
n ∂λ

1
hn′ − α

π
�

1
B

µν
n

1
φ n′ − α

π

1
H

λµν
n ∂λ

1
φ n′

}
.

(15)

Here the brackets (), [] denote symmetrization and alternation over indices with the factor
1/2, ψµν = hµν − 1

2ηµνh and the D’Alembert operator is � = −ηµν∂µ∂ν . The right-hand
sides of the field equations contain the first-order field quantities

1
φ= αµ

8π2

∫
eiqλ

0
xλ
nδ(qun)δ(q�n)

q2 + 2iεq0
d4q,

1
B

µν
n = f

2π

∫
eiqλ

0
xλ
n

0
V

µν
n δ(qun)δ(q�n)

q2 + 2iεq0
d4q

and

1
hµν = 4µG

π

∫
Wµν e−iqλ

0
xλ
nδ(qun)δ(q�n)

q2 + 2iεq0
d4q, (16)

where
0
V

µν
n = u

µ
n �ν

n − uν
n�

µ
n .

Note that gravitational radiation in four dimensions is absent [13], so we do not consider
the second-order graviton equation. The dilaton and axion radiation power can be computed
as the reaction work given by the half sum of the retarded and advanced fields upon the sources
[14] and can be presented in the form

P
µ

(φ) = 16

π

∫
kµ k0

|k0| |
1
J (φ)(k)|2δ(k2) d4k,

P (B)µ = 1

π

∫
kµ k0

|k0|
∣∣ 1
J

αβ

(B)(k)
∣∣2

δ(k2) d4k.

(17)

The final formula for the dilaton and axion bremsstrahlung from the collision of two global
strings can be obtained analytically in the case of the ultrarelativistic collision with the Lorentz
factor γ = (1 − v2)−1/2 � 1. We assume the BPS condition for the coupling constants [15]
αµ = 2

√
2πf . The main contribution to radiation turns out to come from the graviton

exchange terms. The spectrum has an infrared divergence due to the logarithmic dependence
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of the string interaction potential on distance, so a cutoff length � has to be introduced:

P (φ) = 200

3
πG2α2µ4Lκ5

(
f (y) + 1

25f1(y)
)
,

P (B) = 16π3G2µ2Lf 2κ5

3
(f (y) − f2(y)),

(18)

where L is the length of the string, y = d
γ κ�

, κ = γ cos α, α is the strings inclination angle
and

f (y) = 12

√
y

π
2F2

(
1

2
,

1

2
; 3

2
,

3

2
;−y

)
− 3 ln(4yeC), (19)

f1(y) = (1 − erf(
√

y))

(
8

3
y3 − 30y2 + 114y +

169

2

)
− e−y√y

π

(
8

3
y2 − 94

3
y + 131

)
, (20)

f2(y) = (1 − erf(
√

y))

(
8

3
y3 + 6y2 − 6y − 5

2

)
− e−y√y

π

(
8

3
y2 +

14

3
y − 7

)
, (21)

with F being the generalized hypergeometric function and C Euler’s constant.

3. Cosmological estimate

The evolution of cosmic superstring networks was recently discussed in [16–21]. It was shown
that cosmic superstrings share a number of properties of usual cosmic strings, but there are
also differences which may lead to observational signatures. In particular, for usual cosmic
strings the probability of the loop formation P is of the order of unity, whereas for F-strings P
is 10−3 � P � 1 and D-strings 10−1 � P � 1. The cosmic superstring network has a scaling
solution and the characteristic scale is proportional to the square root of the reconnection
probability. The typical separation between two long strings is comparable to the horizon size,
ζ(t) � √

Pt . The numerical results show that the network of long strings will reach an energy
density

ρs = µ

Pt2
. (22)

Consider the scattering of an ensemble of randomly oriented straight strings on a selected
target string in the rest frame of the latter. Since the dependence of the string bremsstrahlung
on the inclination angle α is smooth, we can use for a rough estimate the particular result
obtained for the parallel strings (α = 0) introducing an effective fraction ν of ‘almost’ parallel
strings (roughly 1/3). For N strings in the normalization cube V = L3, we have to integrate
the radiation energy released in the collision with the impact parameter d = x over the plane
perpendicular to the target string with the measure N/L2 · 2πx dx. To find the radiation
power per unit time we have to divide the integrand by the impact parameter. Multiplying
this quantity by the total number of strings N to get the radiation energy released per unit time
within the normalization volume, we obtain in the axion case:

Qbrem =
∫ L

0
P 0ν

N

L2

N

V
2π dx, (23)

where we can use the equations (18) for P 0. Taking into account that the string number density
is related to the energy density (22) via

N

V
= ρs

µL
, (24)
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and assuming for a rough estimate L ∼ � ∼ t , we obtain

Q
(φ)

brem � 800π2G2α2µ4νγ 5 ln γ
1

Pt3
, Q

(B)
brem � 64π4G2µ2νf 2γ 5 ln γ

1

Pt3
. (25)

Note that the realistic value of γ is of the order of unity, while our formulae were obtained in
the γ � 1 approximation. Still we hope to give the correct order of magnitude estimate.

Now we can calculate the energy density of the bremsstrahlung dilaton and axions for the
radiation dominated Universe as a function of time. Since dilatons and axions are massless
at this stage, their energy density scales with the Hubble constant as H−4, so we have the
equation

dε

dt
= −4Hε + Qbrem, (26)

where H = 1
2t

. From here we obtain for the energy density of the bremsstrahlung dilaton and
axions at the moment t > t0:

ε(φ) � 800π2G2α2µ4νγ 5 ln γ
ln (t/t0)

Pt2
, ε(B) � 64π4G2µ2νf 2γ 5 ln γ

ln (t/t0)

Pt2
, (27)

where t0 is the initial time of the long string formation.
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